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A Convex Optimization-Based Coupled Nonnegative
Matrix Factorization Algorithm for Hyperspectral

and Multispectral Data Fusion
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Abstract— Fusing a low-spatial-resolution hyperspectral data
with a high-spatial-resolution (HSR) multispectral data has
been recognized as an economical approach for obtaining HSR
hyperspectral data, which is important to accurate identification
and classification of the underlying materials. A natural and
promising fusion criterion, called coupled nonnegative matrix
factorization (CNMF), has been reported that can yield high-
quality fused data. However, the CNMF criterion amounts to
an ill-posed inverse problem, and hence, advisable regularization
can be considered for further upgrading its fusion performance.
Besides the commonly used sparsity-promoting regularization,
we also incorporate the well-known sum-of-squared-distances
regularizer, which serves as a convex surrogate of the vol-
ume of the simplex of materials’ spectral signature vectors
(i.e., endmembers), into the CNMF criterion, thereby leading
to a convex formulation of the fusion problem. Then, thanks
to the biconvexity of the problem nature, we decouple it into
two convex subproblems, which are then, respectively, solved by
two carefully designed alternating direction method of multi-
pliers (ADMM) algorithms. Closed-form expressions for all the
ADMM iterates are derived via convex optimization theories
(e.g., Karush–Kuhn–Tucker conditions), and furthermore, some
matrix structures are employed to obtain alternative expressions
with much lower computational complexities, thus suitable for
practical applications. Some experimental results are provided
to demonstrate the superior fusion performance of the proposed
algorithm over state-of-the-art methods.

Index Terms— Alternating direction method of multipliers
(ADMM), convex optimization, coupled nonnegative matrix
factorization (CNMF), data fusion, hyperspectral data.

I. INTRODUCTION

H IGH-spatial-resolution (HSR) hyperspectral images
are of paramount importance to accurate identification

and classification of the underlying materials [1]–[3].
However, the spatial resolution of hyperspectral sensors is
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generally more limited than that of multispectral sensors
(or panchromatic sensors) [4]. While direct acquisition of
HSR hyperspectral images is expensive, fusion of multisensor
images serves as a more economical alternative for obtaining
such images, and has received enormous attention in
the past decade in the Geoscience and Remote Sensing
Society (GRSS) [1]–[3], [5], [6], leading to the annual
IEEE GRSS Data Fusion Contest. An effective approach
for obtaining an HSR hyperspectral image is to fuse a
low-spatial-resolution (LSR) hyperspectral image with an
HSR multispectral image (e.g., RGB data [7]), and both are
acquired over the same scene and possibly under similar
atmospheric/illumination conditions [8]–[10]. Acquisition
of such complementary hyperspectral/multispectral data
becomes increasingly available due to the high-resolution
optical satellites and the ever improving revisit cycles
(see [10] and the references therein).

One category of hyperspectral/multispectral data fusion
methods is rooted in the pansharpening technique [11]–[16],
which has been used to enhance the spatial resolution of
multispectral imagery (by fusing it with an HSR panchromatic
image) [5]. For example, the multiresolution analysis-based
pansharpening methods [17] can be adapted for hyperspectral
and multispectral data fusion, by linearly combining mul-
tispectral band images (via linear regression) to synthe-
size HSR image for each hyperspectral band—the so-called
hypersharpening multiresolution analysis (HSMRA) tech-
nique [17], [18]. Another representative pansharpening
method, called component substitution (CS) [13], can also
be adapted for hyperspectral and multispectral data fusion,
by applying it to each multispectral band and the correspond-
ing grouped hyperspectral bands (constructed by correlation-
based clustering) [10].

Another category of fusion methods models the multi-
spectral and hyperspectral data as spectrally and spatially
degraded versions of the high spectral/spatial resolution data
(denoted by Z), respectively, and considers the fusion problem
as an inverse problem of recovering Z from the observable
hyperspectral/multispectral data [see (1) and (2)]. Since such
an inverse problem is ill-posed in general [19, Sec. III.A],
incorporating a generic prior (e.g., Gaussian prior assigned to
the quantity Z [20]) has been considered to design various
fusion methods in the original image domain [21] or in the
transformed wavelet domain [22], and fusion methods in this
category are collectively referred to as Bayesian inference

0196-2892 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4865-2329


LIN et al.: CONVEX OPTIMIZATION-BASED COUPLED NONNEGATIVE MATRIX FACTORIZATION ALGORITHM 1653

method (BIM) [19]. In [23], by introducing a noise-corrupted
version of Z (denoted by Z′), the LSR hyperspectral data
are modeled as a blurred version of Z′. Naturally, Z′ is
considered as missing data, and the expectation–maximization
algorithm can be used to estimate Z [23]. As the E-step
and M-step can be elegantly interpreted as a deblurring
stage and a denoising stage, respectively, the method pro-
posed in [23] actually performs both image fusion and
restoration in the meantime. In [20], the Gaussian prior is
assigned to (dimension-reduced and vectorized) Z. As the
method [20] proposed to estimate the associated hyperpa-
rameters from the data (instead of fixing them a priori),
the induced joint posterior distribution is too complicated to be
directly maximized. Hence, Gibbs sampler [24] (implemented
by the Hamilton Monte Carlo technique [25]) is adopted
to generate a collection of samples that asymptotically fol-
low the posterior distribution, and then, these samples are
averaged to estimate Z. As Bayesian fusion framework usu-
ally involves complicated, nonconvex likelihood or posterior,
the corresponding algorithms are often not computationally
cheap [20]. In view of this, reconsidering the fusion problem
under the convex optimization framework is quite appealing.
A representative method in this line, termed hyperspectral
superresolution (HySure) [26], proposes a convex formulation
based on the so-called vector total variation regularizer [27]
to simultaneously incorporate the spatial and spectral data
characteristics, and solves the problem via the split aug-
mented Lagrangian shrinkage algorithm [28]. In the pioneering
work [26], the superresolution image Z adheres to a low-
rank model Z = AS, where A is assumed known and
S is considered a dimension-reduced version of Z, leading
to a concise convex formulation of the fusion problem with
variable S.

A natural way for hyperspectral/multispectral data fusion is
based on spectral unmixing [29], for which both A and S are
considered unknowns. Fusion methods in this category extract
the spectral information by learning the material signature
(also known as endmember) matrix A from hyperspectral data,
and the extracted spectral information and the multispectral
data are used to reconstruct the HSR material abundance
matrix S (usually via sparse regression). Then, these spectral
information and spatial information are combined to form the
desired HSR hyperspectral fused data under the linear mixing
model [29]. A representative method in this line is based on the
promising coupled nonnegative matrix factorization (CNMF)
criterion [30]. As aforementioned, Z may not be uniquely
inversed from its spectrally and spatially degraded versions
(i.e., the observable multispectral and hyperspectral data),
making the fusion an ill-posed problem in general [19]. Just
like prior information is needed in Bayesian fusion criteria,
the CNMF criterion also requires regularization. The most
commonly used regularizers are to promote the sparsity of
abundance maps based on �0-norm, or its convex surrogate
�1-norm [31]. Another commonly used regularizer in spec-
tral unmixing is based on the volume of the endmember
simplex as considered in the minimum-volume-constrained
nonnegative matrix factorization [32]. Although such a sim-
plex volume minimization approach has been theoretically

proven to be effective in yielding high-fidelity material sig-
natures [33], [34], the simplex volume regularizer is noncon-
vex [35] and hence may degrade the fusion efficiency. In view
of this, the sum-of-squared distances (SSD) between all the
simplex vertices, termed SSD regularizer [36], can be used as
an effective convex surrogate of the simplex volume.

In this paper, following the philosophy in [26], but con-
sidering both A and S as unknowns under the CNMF
framework, we formulate the fusion as a biconvex prob-
lem that can be elegantly solved by the convex optimiza-
tion theory. Specifically, we simultaneously incorporate both
the convex sparsity-promoting �1-norm regularizer and the
convex volume-demoting SSD regularizer into the CNMF
criterion. This regularization strategy has been adopted for
CNMF previously [37], termed volume and sparsity con-
strained CNMF (VSC-CNMF). Nevertheless, the formulation
in [37] only considers the data fitting error of hyperspectral
data [37, eq. (13)]; although this allows adopting the mul-
tiplicative update rules to solve the induced problem [37],
ignoring the data fitting error of multispectral data actually vio-
lates the design of the original (unregularized) CNMF frame-
work [30], leading to not much fusion performance difference
compared with the unregularized one (see Section IV). Instead,
we propose a convex optimization-based CNMF (CO-CNMF)
algorithm to solve the fusion problem with both data fitting
terms taken into consideration. By merit of the biconvexity
nature, we employ the block coordinate descent method [38] to
decouple the regularized CNMF problem into two convex sub-
problems, and solve each subproblem by a carefully designed
alternating direction method of multipliers (ADMM) [39].
We not only derive closed-form solutions for the ADMM iter-
ates, but also exploit some intrinsic matrix structures to refine
the closed-form expressions for two-core ADMM iterates. The
refined expressions are proved with much lower computa-
tional complexity than their original expressions. This is very
important in practice as ADMM may lead to computationally
complex algorithm (even if each iterate is equipped with a
closed-form expression) when the dimension of data is large,
such as in hyperspectral imagery analysis [40]. Moreover,
we prove that CO-CNMF also holds the stationarity conver-
gence property, serving as the counterpart of the NMF con-
vergence theory [41]. The superior fusion performance of
the proposed CO-CNMF algorithm, over some benchmark
fusion methods, will be demonstrated by experiments based
on Wald’s protocol [42].

The remaining part of this paper is organized as follows.
In Section II, we present the signal model that describes the
spectral/spatial relationships among the hyperspectral data, the
multispectral data, and the fused data, followed by our formu-
lation of the regularized CNMF problem. Then, we develop
a convex optimization algorithm to solve the fusion problem
in Section III, and present some experimental results and
performance comparison in Section IV. Finally, we draw
some conclusions in Section V. Some detailed derivations and
theoretical proofs are given in the appendices.

The following notations will be used in the ensuing presen-
tation. ‖·‖p denotes the p-norm. ‖·‖F denotes the Frobenius
norm. Boldface 0, 1, and I, respectively, denote the all-zero
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Fig. 1. Observations, Yh and Ym , can be modeled as spatially blurred (i.e., Lh < L) and spectrally downsampled (i.e., Mm < M) versions of the HSR
hyperspectral data Z [see (1) and (2)]. Each pixel yh [n] (in the image Yh ) corresponds to the spatial region Jn , which covers r2 HSR pixels in Z [see (19)].
Therefore, assuming perfect spatial coregistration [30], the spectral mixture yh [n] can be obtained by intermingling the r2 spectral mixtures that, respectively,
correspond to the r2 subregions of Jn [see (20)]. The aim is to fuse the LSR hyperspectral data Yh and the HSR multispectral data Ym , thereby yielding an
HSR hyperspectral data Ẑ, via convex formulation and optimization.

vector, all-one vector, and identity matrix of proper dimension
(indicated in their subscripts). e(m)

i is the i th m-dimensional
unit vector. IL � {1, . . . , L} for any positive integer L. convS
denotes the convex hull of the set S [38]. vec(X) is the
vector formed by sequentially stacking the columns of the
matrix X. ⊗ stands for the Kronecker product. [·]+ denotes
the orthogonal projection onto nonnegative orthant of the
Euclidean space. � is the componentwise inequality.

II. SIGNAL MODEL AND PROBLEM FORMULATION

To obtain the desired HSR hyperspectral data Z ∈ R
M×L ,

an economical approach is to fuse the HSR multispectral data
Ym ∈ R

Mm×L and the LSR hyperspectral data Yh ∈ R
M×Lh ,

where Mm and L (respectively, M and Lh ) denote the number
of spectral bands and the number of pixels in Ym (respec-
tively, Yh), respectively. The observations, Yh and Ym , can be
modeled as spatially degraded (i.e., Lh < L) and spectrally
degraded (i.e., Mm < M) versions of the fused data Z; to be
precise, we have (see Fig. 1)

Ym = DZ + Em (1)

Yh = ZB + Eh (2)

where the spectral response transform matrix D ∈ R
Mm×M

downsamples the hyperspectral bands of Z leading to the
multispectral data Ym , the spatial spread transform matrix
B ∈ R

L×(L/r2) blurs the HSR data Z leading to the LSR
data Yh , in which the blurring factor r � (L/Lh)1/2 is
assumed to be an integer [19], and Eh and Em are the resid-
uals [30]. B and D can be obtained by image registration and
radiometric calibration, and so they are assumed to be known

a priori [30]. Hence, as suggested by (1) and (2), the fusion
problem is to recover the high spectral/spatial resolution data
Z from the observable Ym and Yh—a linear inverse problem
with Z being the causal factor [28]. Note that there are other
approaches to formulate the fusion as an inverse problem
by considering different causal factors (e.g., materials’ abun-
dances) under the Bayesian framework [19]. Such an inverse
problem is ill-posed in general (e.g., in the pansharpening
case, i.e., Mm = 1) [19, Sec. III.A], and hence requires
regularization (in the CNMF framework) or prior information
(in the Bayesian framework); for instance, the Gaussian prior
has been assigned to the quantity Z [20, Sec. 3.2].

Furthermore, in (1) and (2), each hyperspectral pixel of
Z = [z[1], . . . , z[L]] can be modeled as a mixture of the
underlying materials’ spectral signature vectors (also known
as endmembers), namely [2], [43]

z[n] =
N∑

i=1

si [n] ai = As[n], n ∈ IL (3)

where the i th column of A � [a1, . . . , aN ] � 0M×N is
the i th endmember signature with N denoting the number
of endmembers, and s[n] � [s1[n], . . . , sN [n]]T � 0N is
the nth abundance vector. Note that (3) can be written in
the matrix form as Z = AS, where both A and S �
[s[1], . . . , s[L]] are assumed to be nonnegative [2], [43].
Regarding the sum-to-one assumption of S (i.e., ST 1N = 1L ),
it may not perfectly hold in real data. Indeed, some benchmark
fusion methods consider the sum-to-one assumption [30],
while some do not [19], [26]. Our empirical experiences
suggest that the sum-to-one constraint could have a negative
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impact on the fusion performance, and hence, we opt not to
enforce it in our method.

A natural data fusion criterion arising from (1)–(3) has been
proposed in [30] to minimize data fitting residuals1

CNMF(A, S) � ‖Yh − ASB‖2
F + ‖Ym − DAS‖2

F (4)

while, as such criterion itself amounts to an ill-posed problem,
we further incorporate some regularization mechanisms based
on the physical considerations on A and S. Specifically,
the (regularized) CNMF criterion reconstructs the fused data
Z = AS by solving the following problem:

min
A,S

1

2
CNMF(A, S) + λ1 φ1(A) + λ2 φ2(S)

s.t. A � 0M×N , S � 0N×L (5)

where CNMF(A, S) is the original (unregularized) CNMF
criterion [30], λ1 > 0 and λ2 > 0 are the regularization
parameters, and the two regularizers are selected as

φ1(A) � 1

2

N−1∑
i=1

N∑
j=i+1

‖ai − a j‖2
2, φ2(S) � ‖S‖1. (6)

φ1(A) is the well-known SSD regularizer in hyperspectral
imagery, serving as the convex surrogate2 of the volume of the
simplex conv{a1, . . . , aN } [36]. Note that the simplex volume
minimization approach has been theoretically proven to be
capable of yielding high-fidelity endmember estimates [33],
suggesting that φ1(A) be an ideal and natural regularizer for
the CNMF problem (5) [37]. φ2(S), which is the convex
envelope of ‖S‖0 (i.e., the number of nonzero elements
in S) [38], is assigned to reflect the abundance sparsity in
practical scenarios [44].

Although the regularization strategy of (5) has been
considered in [37] for judiciously incorporating the nature
of A and S, the (revised) multiplicative update rules adopted
in [37] may not effectively solve the regularized CNMF
problem (5), leading to marginal fusion performance improve-
ment compared with the unregularized one [30]. In Section III,
we solve (5) with a more delicately designed algorithm

1It is possible to consider different weights in the CNMF criterion,
i.e., CNMF(A, S) � ‖Yh − ASB‖2

F + ρ‖Ym − DAS‖2
F for some ρ �= 1. For

example, VSC-CNMF considers ρ = 0 [37]. In case that a prior knowledge
is available for selecting a suitable ρ ≥ 0 (but ρ �= 1), one can redefine
(C(A)

1 , C(S)
2 , y) in (7) and (8) as

C(A)
1 � [(BT ⊗ A)T ,

√
ρ(IL ⊗ DA)T ]T

C(S)
2 � [((SB)T ⊗ IM )T ,

√
ρ(ST ⊗ D)T ]T

y � [vec(Yh)T , vec(
√

ρYm)T ]T

when simplifying the criterion as a single convex quadratic term, while other
developments still remain valid. However, when such a prior knowledge
is unavailable, assigning equal weights in fitting the entries of (Yh , Ym)
(i.e., ρ = 1) is more reasonable [30] and will be considered in this paper.

2From some basic matrix analysis, one can verify that log(det(ĀT Ā)) ≤∑N−1
i=1

∑N
j=i+1 ‖ai − a j ‖2

2, where Ā � [a1 − aN , . . . , aN−1 − aN ]
(N ≥ 2), and log(·) [respectively, det(·)] denotes natural logarithm
(respectively, determinant). By plugging the simplex volume expression
vol(conv{a1, . . . , aN }) = (1/((N − 1)!))(det(ĀT Ā))

1/2
[33] into the above

inequality, we see that log(vol(conv{a1, . . . , aN })) ≤ φ1(A) ∀N ≥ 2.
Therefore, the SSD regularizer can be viewed as a convex upper bound
approximation of the (log-transformed) simplex volume.

using convex optimization tools [38]. The proposed algorithm,
as will be seen, shows that the regularization strategy in the
formulation (5) indeed yields much better fusion performance
than the unregularized one.

III. CONVEX OPTIMIZATION-BASED

DATA FUSION ALGORITHM

In this section, we solve (5) with an algorithm devised
based on convex optimization theories, such as ADMM and
Karush–Kuhn–Tucker (KKT) conditions [38]. We not only
derive closed-form expressions for each algorithmic step, but
also exploit the structure/sparsity of the matrices (involved
in these expressions) to greatly reduce the computational
complexity.

We begin by noticing that although (5) is a noncon-
vex problem, it is a biconvex one. To be precise, when
A (respectively, S) is fixed, (5) is a convex problem with
variable S (respectively, A) (see [45, Definition 1.3] for
the definition of a biconvex problem). To see it, we define
s � vec(S), a � vec(A), and y � [vec(Yh)T , vec(Ym)T ]T .
Then, the biconvexity of (5) can be easily seen by expressing
CNMF(A, S) as a (convex) quadratic form in terms of s (for
fixed A [see (7)]), and as a (convex) quadratic form in terms
of a (for fixed S [see (8)]). Precisely, with some matrix
manipulations, we have

CNMF(A, S) = ∥∥C(A)
1 s − y

∥∥2
2 (7)

= ∥∥C(S)
2 a − y

∥∥2
2 (8)

where

C(A)
1 � [(BT ⊗ A)T , (IL ⊗ DA)T ]T

∈ R
(M Lh+Mm L)×N L (9)

C(S)
2 � [((SB)T ⊗ IM )T , (ST ⊗ D)T ]T

∈ R
(M Lh+Mm L)×N M . (10)

Since (5) is a biconvex problem, alternating optimization is
suitable for solving it.

Specifically, the proposed CO-CNMF algorithm is initial-
ized with A0, which is obtained by the HyperCSI algo-
rithm [43] (that is fast and reproducible for estimating the
endmember signatures [43]), followed by alternatively solving
the following two convex subproblems until convergence:

Sk+1 ∈ arg min
S�0N×L

1

2
CNMF(Ak, S) + λ2 φ2(S) (11)

Ak+1 ∈ arg min
A�0M×N

1

2
CNMF(A, Sk+1) + λ1 φ1(A) (12)

where the superscript “k” in Sk and Ak denotes the iteration
number rather than their power. The proposed CO-CNMF
algorithm is summarized in Algorithm 1, whose convergence
property is detailed in Proposition 1 with proof relegated to
Appendix A.

Proposition 1: Assuming that Algorithms 2 and 3 exactly
solve (11) and (12), respectively, the sequence {(Ak, Sk)}
generated by Algorithm 1 converges to a stationary point [38]
of (5).
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Algorithm 1 CO-CNMF Algorithm for Solving (5)
1: Given Yh , Ym , B and D.
2: Set k := 0, and initial A0 (obtained by HyperCSI [43]).
3: repeat
4: Solve (11) by Algorithm 2, and update Sk+1;
5: Solve (12) by Algorithm 3, and update Ak+1;
6: k := k + 1;
7: until the predefined stopping criterion is met.
8: Output HSR hyperspectral fused data Z = AkSk .

Remark 1: Note that both (11) and (12) are convex
problems. Therefore, exact minimization for them (assumed
in Proposition 1) is achievable through some off-the-shelf
convex solvers (e.g., CVX [46]). However, these general-
purpose solvers can be quite slow especially when the problem
size is large. We are hence motivated to develop customized
convex solvers for efficiently handling (11) and (12) based on
ADMM, that is known to be effective for big data (convex)
optimization [39]. Note that under the very mild condition
that the linear equality constraint v1 = Mv2 has MT M to
be invertible (here, v1 and v2 are the two primal variables in
ADMM formulation), a limit point of the sequence {(v j

1 , v
j
2 )}

generated by ADMM ( j is the ADMM iteration number) must
be a global minimizer [38, Lemma 9.2]. Obviously, the above
condition holds true for both ADMM Algorithms 2 and 3
[see (14) and (23), for both of which MT M in the above
condition reduces to the identity matrix and hence invertible]
that will be devised in Sections III-A and III-B, respectively.
Note that the global minimizer of (11) [respectively, (12)] can
be easily recovered from that of (14) [respectively, (23)] by
devectorization.

Algorithm 2 ADMM Algorithm for Solving (11)

1: Given Yh , Ym , B, D and Ak .
2: Set j := 0, x0 := 0N L and ν0 := 0N L .
3: repeat
4: Update s j+1 by (21);
5: Update x j+1 by (22);
6: Update μ j+1 := μ j + s j+1 − x j+1;
7: j := j + 1;
8: until the predefined stopping criterion is met.
9: Output Sk+1.

A. ADMM for Solving (11)

Besides the large problem size, another bottleneck for effi-
ciently solving (11) consists in the coupled �2- and �1-norm
terms. Since ADMM blends the decomposability of the dual
ascent method with the superior convergence property of the
method of multipliers [39], this motivates us to solve (11)
via ADMM, which allows handling �2- and �1-norm terms
separately and leads to closed-form expressions for each
algorithmic step.

For the given convex problem (11), we have more than
one way to reformulate it into the ADMM form [39]. For

Algorithm 3 ADMM Algorithm for Solving (12)

1: Given Yh , Ym , B, D and Sk+1.
2: Set j := 0, z0 := 0M N and ν̃0 := 0M N .
3: repeat
4: Update a j+1 by (27);
5: Update z j+1 by (29);
6: Update ν̃ j+1 := ν̃ j + η̃(a j+1 − z j+1);
7: j := j + 1;
8: until the predefined stopping criterion is met.
9: Output Ak+1.

instance, (11) can be reformulated as

min
s,x,z∈RN L

1

2

∥∥C(Ak)
1 s − y

∥∥2
2 + λ2‖x‖1 + I+(z)

s.t. s = x, x = z

as considered in [31] [see (6) and (9)], where

I+(z) �
{

0, if z � 0M N

∞, otherwise.
(13)

The above reformulation can separately handle the �2-norm
term, the �1-norm term, and the nonnegative constraint, in (11),
by the primal variables s, x, and z, respectively. However,
it induces totally five ADMM iterates (three for primal updates
and two for dual updates) [31], making the algorithm not
computationally efficient.

We will show that by the KKT theory [38], we actually only
need a total of three ADMM iterates (two for primal updates
and one for dual update) [see (15)]. The key for this is to
deal with the �1-norm term and the nonnegative constraint
[in (11)] by one single primal variable [i.e., x in (14)]; this
makes that the nondifferentiable �1-norm term becomes dif-
ferentiable on the nonnegative-constrained domain (i.e., R

N L+ ),
thus allowing the adoption of KKT theorem for simple closed-
form ADMM iterate (see Appendix C). Specifically, we refor-
mulate (11) as

min
s,x∈RN L

1

2
‖C1s − y‖2

2 + λ2‖x‖1

s.t. s = x, x � 0N L (14)

where we use C1 to denote C(Ak)
1 for notational simplicity

[see (9)]. Note that the primal variable x simultaneously han-
dles the �1-norm term and the nonnegative constraint, which
greatly simplifies the expression of the augmented Lagrangian
(involved in ADMM), thereby improving the computational
efficiency.

The augmented Lagrangian of (14) is given by

L(s, x, ν) = 1

2
‖C1s − y‖2

2 + λ2‖x‖1+ νT(s − x) + η

2
‖s − x‖2

2

where ν ∈ R
N L is the only dual variable associated with the

equality constraint in (14), and η > 0 is the penalty parameter.
Then, ADMM solves (14) by iteratively updating the two
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primal variables and the dual variable as follows [47]:

s j+1 ∈ arg min
s∈RN L

L(s, x j , ν j ) (15a)

x j+1 ∈ arg min
x∈R

N L+
L(s j+1, x, ν j ) (15b)

ν j+1 = ν j + η(s j+1 − x j+1) (15c)

where x0 and ν0 are initialized by 0N L (or by warm start [39]).
Note that (15) only involves three ADMM iterates.

By defining the scaled dual variable μ � ν/η [39], (15a)
and (15b) can be conveniently expressed in the following
scaled form:

s j+1 ∈ arg min
s∈RN L

1

2
‖C1s − y‖2

2 + η

2
‖s − x j + μ j ‖2

2 (16a)

x j+1 ∈ arg min
x∈R

N L+
λ2‖x‖1 + η

2
‖s j+1 − x + μ j ‖2

2 (16b)

with (15c) being simplified as μ j+1 = μ j +s j+1 −x j+1. Note
that (16b) is generally referred to as nonnegative-constrained
proximal mapping, and its solution can be obtained using
proximity theory [48], [49].

Next, we derive closed-form solutions for (16a) and (16b),
respectively. Since (16a) is an unconstrained quadratic prob-
lem, its closed-form solution can be derived as

s j+1 = (CT
1 C1 + η IN L )−1(CT

1 y + η x j − ν j ). (17)

However, the computational complexity of (17) can be
easily verified to be O((N L)2(M Lh + Mm L + N L)) =
O(Lh(N L)2ξ), where ξ � max{M, Mmr2, Nr2}. Since L is
usually several tens of thousands, such complexity may be
too high for practical application. To reduce the complexity,
we practically consider an assumption that each hyperspectral
pixel yh[n] (i.e., the nth column of Yh) can be obtained by
blurring (or linear combining) the r2 HSR hyperspectral pixels
(in Z) of the same spatial region covered by the pixel yh[n]
(see Fig. 1). Mathematically, we assume that there exists a
partition {J1, . . . ,JLh } of the index set IL such that

IL = J1 ∪ · · · ∪ JLh (18)

|Jn | = r2 ∀n ∈ ILh (19)

yh[n] = ZJn g + eh[n] ∀n ∈ ILh (20)

where Jn collects the indices of pixels (in Z) corresponding to
the spatial region covered by yh[n], eh[n] denotes the nth col-
umn of Eh [see (2)], ZJn ∈ R

M×r2
is the matrix collecting the

r2 columns of Z with indices specified by Jn , and g is the blur-
ring (or combining) coefficient vector [19], [30], [31], [50].
Some works model the blurring effect by a uniformly down-
sampling procedure [31, Sec. 3.2], for which g is a normalized
all-one vector; some works model the blurring effect via a
symmetric Gaussian convolution kernel [19, Sec. II.A], for
which g is a vectorized convolution kernel (also known as
Gaussian point spread function [30], [50]). In the following
lemma, we derive another closed-form solution of (16a),
which has much lower computational complexity than (17),
for arbitrary g:

Lemma 1: Let yh � vec(Yh), ym � vec(Ym), and
C̄ � [(gT ⊗ Ak)T , (Ir2 ⊗ DAk)T ]T ∈ R

(M+r2 Mm )×(r2 N).

Then, (16a) has the following solution:
s j+1 := η[ILh ⊗ (C̄T C̄ + η Ir2 N )−1]( x j − μ j )

+ {ILh ⊗ [(C̄T C̄ + η Ir2 N )−1(gT ⊗ Ak)T ]}yh

+ {ILh ⊗ [(C̄T C̄ + η Ir2 N )−1(Ir2 ⊗ DAk)T ]}ym (21)

whose computational complexity is given by

O((N L + (Nr2)2)ξ)

where ξ � max{M, Mmr2, Nr2}.
The proof of Lemma 1 is relegated to Appendix B. On the

other hand, the closed-form solution for (16b) is given by

x j+1 = [s j+1 + μ j − (λ2/η)1N L ]+ (22)

which can be derived from the KKT conditions [38], detailed
in Appendix C. The resulting ADMM algorithm is summarized
in Algorithm 2.

B. ADMM for Solving (12)

The bottleneck for solving (12) stems from its nonnegativity
constraint. Without this constraint, (12) can be solved with a
closed-form solution. Inspired by this observation, we employ
the decomposability of ADMM to separately handle the non-
negativity constraint in (12). To this end, we reformulate (12)
in a form wherein the primal variables can be split into several
blocks, with the associated objective function separable across
this splitting [39], that is

min
a,z∈RM N

1

2
‖C2 a − y‖2

2 + λ1φ1(A) + I+(z)

s.t. a = z (23)

where we use C2 to denote C(Sk+1)
2 for notational simplicity

[see (10)], and I+(z) is the indicator function defined by (13).
Then, with z0 and ν̃0 (the dual variable) initialized by 0M N ,

ADMM solves (23) via the following iterative procedure:
a j+1 ∈ arg min

a∈RM N
L(a, z j , ν̃ j ) (24a)

z j+1 ∈ arg min
z∈RM N

L(a j+1, z, ν̃ j ) (24b)

ν̃ j+1 = ν̃ j + η̃(a j+1 − z j+1) (24c)

where L(a, z, ν̃) is the augmented Lagrangian of problem (23)
defined as

L(a, z, ν̃) = 1

2
‖C2a − y‖2

2 + λ1φ1(A) + I+(z)

+ ν̃T (a − z) + η̃

2
‖a − z‖2

2

in which η̃ > 0 is the penalty parameter. Next, we solve (24a)
and (24b).

To derive a closed-form solution for (24a), we define
Pi j � (e(N)

i − e(N)
j )T ⊗ IM and rewrite φ1(A) as

φ1(A) = 1

2

N−1∑
i=1

N∑
j=i+1

‖Pi j a‖2
2. (25)
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By (25), one can see that (24a) is actually an unconstrained
(convex) quadratic problem, whose closed-form solution can
be derived as

a j+1 = (CT
2 C2 + λ1PT P + η̃ IM N

)−1(CT
2 y + η̃ z j − ν̃ j)

(26)

where P ∈ R
(0.5M N(N−1))×(M N) is the matrix formed by

stacking all the Pi j ∈ R
M×(M N) . The computational com-

plexity of (26) can be verified to be O(N4 M3 + (N M)2ξ ′),
where ξ ′ � max{M Lh , Mm L}, which is much lower than that
of (17) (note that M � L for typical scenarios). However,
we still derive another closed-form solution, which is more
computationally efficient than (26), in the following lemma.

Lemma 2: Assume that N ≤ M Mm . Then, (24a) has the
following solution:
a j+1 = (λ1PT P + η̃ IM N + ((Sk+1B)(Sk+1B)T ) ⊗ IM

+ (Sk+1(Sk+1)T ) ⊗ (DT D))−1(CT
2 y + η̃ z j − ν̃ j)

(27)

whose computational complexity is given by

O(N4 M3 + N Mξ ′)

where ξ ′ � max{M Lh , Mm L}.
The proof of Lemma 2 is relegated to Appendix D. Usually,

N is less than ten, while M is several hundreds. Therefore,
the premise of N ≤ M Mm is true in general. To solve (24b),
we notice that it can be conveniently expressed in the follow-
ing scaled form:

z j+1 ∈ arg min
z∈RM N

I+(z) + η̃

2
‖a j+1 − z + μ̃ j ‖2

2 (28)

where μ̃ � ν̃/η̃ is the scaled dual variable [39]. Equation (28)
is generally referred to as the proximity operator for the
indicator function I+(z) [39], with a closed-form solution
given by

z j+1 = [a j+1 + μ̃ j ]+ = [a j+1 + ν̃ j/η̃]+. (29)

The resulting algorithm is summarized in Algorithm 3.
Remark 2: Algorithm 1 will stop when the relative change

of the objective values of (5) is smaller than 10−3,
which is a standard stopping criterion commonly used
in biconvex optimization [45, Sec. 4.2.1]. On the other
hand, Algorithms 2 and 3 will stop when their associated
primal/dual residuals are smaller than 10−3, which is also a
standard stopping criterion in ADMM [39]. For Algorithm 2,
the primal residual is ‖s j − x j‖2, and the dual residual is
‖−η(x j −x j−1)‖2 [39]. For Algorithm 3, the primal residual is
‖a j − z j‖2, and the dual residual is ‖ − η̃(z j − z j−1)‖2 [39].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Design

To evaluate the performance of the proposed CO-CNMF
algorithm, we adopt the widely used Wald’s protocol to design
our experiments [42]. Specifically, the HSR multispectral data
Ym and LSR hyperspectral data Yh are, respectively, obtained
by downsampling and blurring an observed HSR hyperspectral

Fig. 2. Flowchart for the Wald’s protocol.

reference image Z (see Fig. 2). Next, the proposed CO-CNMF
algorithm, as well as six state-of-the-art fusion methods,
including the original (unregularized) CNMF [30], BIM [19],
HySure [26], VSC-CNMF [37], HSMRA [17], and CS [13],
are used to fuse Ym and Yh . The quality of the obtained fused

HSR hyperspectral image (denoted as Ẑ) is then evaluated by

the similarity between Ẑ and the reference image Z.
Some popular metrics have been proposed in the lit-

erature [5], [19], [30], [51] to quantitatively measure the
similarity between Ẑ and Z, including peak signal-to-noise
ratio (PSNR) for spatial quality measure, spectral angle
mapper (SAM) for spectral quality measure, and root mean
squared error (RMSE) and erreur relative globale adimension-
nelle de synthèse (ERGAS) for global quality measures. Let
Ẑ(m) and Z(m) denote the mth rows of Ẑ and Z, respectively.
Then, the definitions of the above quantities are given as
follows.

1) The PSNR is defined as

PSNR = 1

M

M∑
m=1

PSNRm

where PSNRm measures the spatial quality in the
mth spectral band, ∀m ∈ IM , defined as

PSNRm = 10 log10

(
max

{
ẑ2

mn | n ∈ IL
}

1
L ‖Ẑ(m) − Z(m)‖2

2

)
(30)

where ẑmn denotes the nth entry in the vector Ẑ(m). The
larger the value of PSNR, the higher the spatial quality
of the fused image Ẑ.
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2) The SAM measures the spectral distortion as

SAM = 1

L

L∑
n=1

arccos

(
(ẑ[n])T z[n]

‖ẑ[n]‖2 · ‖z[n]‖2

)
where ẑ[n] denotes the nth column of Ẑ. The smaller
the value of SAM, the better the spectral quality of Ẑ.

3) The RMSE measures the global quality by

RMSE =
√√√√ 1

M

M∑
m=1

RMSE2
m

where

RMSEm = 1√
L

‖Ẑ(m) − Z(m)‖2. (31)

The smaller the value of RMSE, the higher the global
quality of the fused image Ẑ.

4) Another global quality measure, ERGAS, is to quantize
the relative dimensionless global error, defined as

ERGAS = 100

r

√√√√ 1

M

M∑
m=1

RMSE2
m

μ2
Z(m)

where r is the blurring factor, μZ(m) � (1/L)Z(m)1L

is the mean of the row vector Z(m), and RMSEm has
been defined in (31). The smaller the value of ERGAS,
the higher the global quality of Ẑ.

Furthermore, the computational time T (in seconds) is
used as the measure of computational efficiency. All the
algorithms under test are implemented using Mathworks
MATLAB R2013a, and the computer facility is equipped with
Core-i7-4790K CPU with 4-GHz speed and 16-GB random
access memory.

B. Data Generation

For the reference image Z to be used in Wald’s protocol
(see Section IV-A), we consider three benchmark data sets,
acquired by three different hyperspectral sensors, respectively,
as listed in the following.

1) The first data set (with a spatial resolution of 1.3 m) was
acquired by the reflective optics system imaging spec-
trometer (ROSIS) sensor over Pavia University, Northern
Italy [52]. The ROSIS sensor is composed of 115 bands,
while, after removing those corrupted by water-vapor
absorption, only 103 bands (between 430 and 860 nm)
are used in our experiments. Then, a uniform spectral
response transform matrix D ∈ R

4×103, approximately
corresponding to the Landsat TM bands 1–4 (covering
445–516, 506–595, 632–698, and 757–853 nm regions,
respectively), downsamples the reference data to gener-
ate the multispectral data Ym [26], [53], [54].

2) The second data set was taken over the Washington
DC mall by the hyperspectral digital imagery collection
experiment (HYDICE) sensor in 1995 [55], and a total
of 191 spectral bands (ranging from 400 to 2500 nm)
are used in our experiments. Then, a downsampling
matrix D ∈ R

6×191, corresponding to the Landsat

Fig. 3. Fiftieth band of (a) reference image Z, (b) blurred LSR image Yh , and
(c) reconstructed HSR image obtained by the proposed CO-CNMF algorithm,
for the three data sets, i.e., (Top row) Pavia University, (Middle row)
Washington DC, and (Bottom row) Moffett Field.

TM bands 1–5 and 7 (covering 450–520, 520–600,
630–690, 760–900, 1550–1750, and 2080–2350 nm
regions, respectively), uniformly filters the HYDICE
data to generate the multispectral data Ym

[26], [30], [54].
3) The third data set, provided by Jet Propulsion Labo-

ratory, National Aeronautics and Space Administration,
was acquired over Moffett Field, Santa Clara, CA, USA,
by Airborne Visible/Infrared Imaging Spectrometer sen-
sor in 1997 [56], with a total of 183 bands (ranging
from 400 to 2500 nm) used in our experiments. Then,
a spectral response transform matrix D ∈ R

6×183,
corresponding to the Landsat TM bands 1–5 and 7,
uniformly downsamples the reference data to generate
the multispectral data Ym [26], [30], [54].

For each of the three reference images, we select an
L = 210 × 210 commonly studied subscene [19], [26], [30],
and the associated 50th band images are displayed in
the left column of Fig. 3. Then, a spatial spread trans-
form matrix B ∈ R

44100×900, corresponding to the Gaussian
point spread function, with variance 2 and blurring factor
r = 7 [30], [50], [57], blurs the reference data Z to gener-
ate the LSR hyperspectral data Yh [50], [58], [59]. Finally,
Ym and Yh are contaminated by zero-mean additive Gaussian
noise with SNRs being 30 and 35 dB, respectively [19]. Each
Yh contains Lh = 30 × 30 pixels, and the associated
50th band LSR images are displayed in the middle column
of Fig. 3.

C. Model-Order Selection and Parameter Setting

When the linear mixing model (3) is violated, it can
even be helpful to cover nonlinear effects with a larger
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Fig. 4. Fusion performance of the CNMF algorithm (black dashed line) and
the proposed CO-CNMF algorithm (blue solid line), in terms of (a) SAM and
(b) RMSE, with respect to different model orders N , for the three data sets,
i.e., Pavia University (◦), Washington DC (�), and Moffett Field (�).

model-order N , as reported in [60]. In the CNMF frame-
work [30], the additional endmembers in A can then be
explained as containing both shading and material endmem-
bers. Note that the nonlinear effect can also be interpreted by
the variability of endmembers [40, Sec. V.B]. Because setting
a larger N allows capturing the effect by associating a single
material with multiple endmembers, this strategy can hence
deal with spectrally varying scenes, as reported in the original
CNMF work [30]. Another possible strategy is to adopt
nonlinear modeling for Z [61], but it may induce a cumber-
some fusion algorithm as considering multiple reflections of
solar radiation can lead to far more complicated (nonconvex)
formulations. To investigate a proper setting of N , we test
the fusion performance of the proposed CO-CNMF algorithm
(with λ1 = λ2 = 0.001 and η = η̃ = 1) with respect to
different model orders. The results are demonstrated in Fig. 4,
where one can see that setting a model-order of N > 10
does not help in improving the data fusion performances
(in terms of both SAM and RMSE) for all the three data sets.
Therefore, we set N = 10 for the CO-CNMF algorithm in
all the subsequent experiments, though the orders estimated
by the benchmark model selection algorithms [62], [63] are
all no larger than 8 for all the three data sets. As assumed
in many state-of-the-art fusion methods, we will once again
confirm that the linear mixing model is sufficient for yielding
promising fusion performance (see Section IV-D).

On the other hand, from Fig. 4, we see that for all the three
data sets, the proposed CO-CNMF algorithm outperforms the
original (unregularized) CNMF algorithm (in terms of both

TABLE I

FUSION PERFORMANCE OF THE PROPOSED CO-CNMF ALGORITHM,
IN TERMS OF SAM AND RMSE, WITH RESPECT TO DIFFERENT

REGULARIZATION PARAMETERS λ1 AND λ2 , FOR

THE THREE DATA SETS

TABLE II

PERFORMANCE COMPARISON OF VARIOUS FUSION ALGORITHMS

WITH THE DATA SET OF PAVIA UNIVERSITY

TABLE III

PERFORMANCE COMPARISON OF VARIOUS FUSION ALGORITHMS

WITH THE DATA SET OF WASHINGTON DC

TABLE IV

PERFORMANCE COMPARISON OF VARIOUS FUSION ALGORITHMS
WITH THE DATA SET OF MOFFETT FIELD

SAM and RMSE) for all the tested model orders. This shows
that the ill-posed CNMF problem indeed requires regulariza-
tion, and that the adopted SSD regularizer φ1(A) and the
sparsity-promoting regularizer φ2(S) are suitable for regular-
izing the CNMF solution. To understand which regularizer is
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TABLE V

SUMMARY OF COMPLEXITIES (AND THEIR OMs ON REAL DATA) AND PRT, IN SECONDS, OF THE NAIVE UPDATES (17) [RESPECTIVELY, (26)]
AND ITS IMPROVEMENT (21) [RESPECTIVELY, (27)], WHERE ξ � max{M, Mmr2, Nr2} AND ξ ′ � max{M Lh , Mm L}

more effective, we disable φ1 (respectively, φ2) and identify
an optimal setting for λ2 (respectively, λ1). The results are
demonstrated in Table I, where the setting of 0.001 is optimal
(or nearly optimal) for both λ1 or λ2 (when one is disabled).
Furthermore, the SSD regularizer seems slightly more effective
than the �1-norm regularizer for all the three data sets, because
the setting (λ1, λ2) = (0.001, 0) always yields slightly smaller
SAM/RMSE than the setting (λ1, λ2) = (0, 0.001). Note that
enabling both regularizers, i.e., λ1 = λ2 = 0.001, further
upgrades the fusion performance (see Tables II–IV). In the
ensuing experiments, the regularization parameters will be set
as λ1 = λ2 = 0.001; the parameters can be tuned if users have
further prior knowledge on their data sets; for instance, if the
materials in a scene of interest are known to be highly sparse,
the users may increase λ2 for the sparsity-promoting �1-norm
regularizer φ2. Moreover, the setting of penalty parameters
can affect the convergence speed [39]; we empirically found
that the standard setting η = η̃ = 1 [39, Ch. 11] has
good convergence speed, so it will be adopted in the ensuing
experiments. Although the above setting may not be optimal,
it generally yields good fusion performance (see Fig. 4). The
reconstructed HSR images, obtained by CO-CNMF under the
above parameter setting, for all the three selected subscenes,
are also displayed in the right column of Fig. 3, where one
can see that the reconstructed images hold high resemblance
to their respective reference images.

D. Performance Comparison and Discussion

To quantitatively compare the performances of the pro-
posed CO-CNMF algorithm with the state-of-the-art algo-
rithms, including CNMF [30], BIM [19], HySure [26],
VSC-CNMF [37], HSMRA [17], and CS [13], we evaluate
their fusion performances in terms of PSNR, SAM, RMSE,
and ERGAS, and the results are displayed in Tables II (Pavia
University), III (Washington DC), and IV (Moffett Field). The
boldface numbers in these tables indicate the best performance
(i.e., the largest PSNR, or the smallest SAM/RMSE/ERGAS)
of all the image fusion algorithms under test.

For all the three data sets, one can observe that the proposed
CO-CNMF algorithm has the highest PSNR value (the best
spatial quality), and the smallest SAM value (the best spectral
shape preservation capability). Moreover, CO-CNMF also
yields the best global fusion quality for all the three data sets,
as indicated by the smallest RMSE/ERGAS values (except for
the ERGAS value on the Washington DC data set, in terms
of which CS performs the best). Note that VSC-CNMF does
not show better performance than the (unregularized) CNMF;

this indicates that without considering both data fitting errors
(for Yh and Ym), regularization itself may not be very effective
to yield better fusion results [37].

As for computational efficiency, HSMRA performs the best,
while BIM takes the longest running time. For all the three
data sets, under the stopping criteria specified in Remark 2,
Algorithm 1 terminates within 80 outer iterations, while, for
each outer iteration k, Algorithm 2 (respectively, Algorithm 3)
terminates within 50 (respectively, 20) inner iterations.
Let us emphasize that the amounts of computational time of
CO-CNMF for all the three data sets are more than 2000 s
(around two orders of magnitude (OMs) longer than those
shown in Tables II–IV), if we simply use the naive closed-
form expressions (17) (for updating s j+1) and (26) (for updat-
ing a j+1) in the ADMM iterates. To understand the effective-
ness of (21) (derived in Lemma 1 for updating s j+1) and (27)
(derived in Lemma 2 for updating a j+1), we summarize the
associated computational complexities (and their OMs for the
three data sets), as well as the per-iteration running time (PRT),
in Table V. One can see that (21) [respectively, (27)] improves
the computational efficiency of (17) [respectively, (26)] by
several orders when updating s j+1 (respectively, a j+1). In
fact, the averaged PRT (averaged over inner iterations j )
of (21) and (27) are much less than that shown in Table V,
because some quantities (independent of j ) only need to
be computed once. For example, for updating s j+1 using
(21), both V1 � η[ILh ⊗ (C̄T C̄ + η Ir2 N )−1] and v2 �
{ILh ⊗ [(C̄T C̄ + η Ir2 N )−1(gT ⊗ Ak)T ]}yh + {ILh ⊗ [(C̄T C̄ +
η Ir2 N )−1(Ir2 ⊗ DAk)T ]}ym only need to be computed once
(during the first iteration j = 1), because they are independent
of j ; in the subsequent iterations j > 1, we only need to
compute the multiplication v

j
3 � V1(x j −μ j ) and the addition

s j+1 := v
j
3 +v2. This implementation trick greatly reduces the

computational time of CO-CNMF; using Pavia University data
set for example, after the second iteration, (21) only takes
0.040 (instead of 0.089 s), while (27) only takes 0.005 s
(instead of 0.049 s), greatly showing the effectiveness of
Lemmas 1 and 2.

Furthermore, to compare the fusion performances with
respect to different spectral bands, we also display the PSNRm

[see (30)] and RMSEm [see (31)] curves of these fusion algo-
rithms, for all the three data sets, in Fig. 5. For the Washington
DC data set, VSC-CNMF (respectively, CS) outperforms the
other algorithms in the Landsat TM band 5 (respectively, 7),
while CO-CNMF has the best fusion performance in the other
band regions. For Pavia University and Moffett Field data sets,
the proposed CO-CNMF algorithm significantly outperforms
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Fig. 5. PSNRm and RMSEm curves (versus spectral band m) of the proposed CO-CNMF algorithm (blue line) and six state-of-the-art fusion algorithms,
including CNMF (black line), BIM (green line), HySure (red line), VSC-CNMF (pink dashed line), HSMRA (orange dashed line), and CS (brown dashed line),
for the three data sets, i.e., (left column) Pavia University, (middle column) Washington DC, and (right column) Moffett Field.

the other six state-of-the-art algorithms for all the band
regions. These experimental results well support the validity
of the regularized CNMF criterion (5), as well as the efficacy
of the carefully designed convex optimization method.

E. Performance Evaluation for Imperfect Coregistration Case

Image coregistration is to transform different data sets
(acquired from different sensors) into the same coordinate
system [64]. Although perfect coregistration (for Ym and Yh )
is assumed in many state-of-the-art fusion methods, the impact
of this hypothesis violation is seldom studied in the literature.
In this section, we study a typical misregistration case that
the spatial regions covered by Ym and Yh are not perfectly
aligned [64]. Specifically, the experimental design is still based
on Wald’s protocol, but we introduced another reference image
Zδ (for generating Ym), where the coordinate system of Zδ

is deviated from the original reference image Z by δ pixels
(both horizontally and vertically); δ is an integer parameter
and δ = 0 corresponds to the perfect coregistration case.
A graphical illustration is given in Fig. 6. Then, Ym (respec-
tively, Yh) is obtained as a spectrally downsampled version
of Zδ (respectively, a spatially blurred version of Z), and
Ẑ is obtained by fusing the imperfectly coregistered data
(see Fig. 2).

Fig. 6. Spatial regions covered by the two reference images Z (for generat-
ing Yh ) and Zδ (for generating Ym ) are deviated by δ pixels (both horizontally
and vertically), so the coordinate systems of the resultant Yh and Ym are not
perfectly coregistered.

The experimental results for Washington DC data set are
given in Fig. 7, where BIM is less susceptible to misregistra-
tion, because the overcomplete dictionary is learned from over-
lapping patches of a rough estimate of (dimension-reduced)
Z [19]; note that the patch-overlapping strategy can improve
the robustness against misregistration (besides reducing block
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Fig. 7. (a) PSNR and (b) RMSE curves (versus δ) of various fusion methods
for the Washington DC data set.

artifacts) [65]. However, the fusion performances of all the
methods under test, including BIM, degrade when the two
coordinate systems (with respect to Ym and Yh) get more
deviated (or when δ becomes larger). The above results indi-
cate that the coregistration issue (though out of the scope of
this paper) is important for yielding better fusion performance.

V. CONCLUSION

Adopting the CNMF criterion with the �1-norm and
SSD regularizers incorporated, we have presented a con-
vex formulation for the hyperspectral and multispectral data
fusion problem, which was then solved by the proposed
ADMM-based CO-CNMF algorithm. In CO-CNMF, all the
ADMM iterates are updated using closed-form expressions.
These expressions were derived from convex optimization
theories and have been further refined by carefully observing
some matrix structures embedded in their naive counter-
parts, thereby yielding significant computational complexity
reduction (see Lemmas 1 and 2) for practical applications.
For performance evaluation, we have also provided extensive
experimental results based on Wald’s protocol, using three
benchmark data sets acquired by three different hyperspectral
sensors. These results have demonstrated the superior fusion
performance of the proposed CO-CNMF algorithm over state-
of-the-art fusion methods.

APPENDIX

A. Proof of Proposition 1

We begin with observing that in (5), the constraint
sets for both A and S are closed sets, because they are

intersections of finite closed half-spaces [38]. Moreover, as it
can be easily verified that CNMF(A, S), φ1(A), and φ2(S)
are all continuous functions [66], their linear combination
[i.e., the objective function of (5)] is also continuous [66].
The above observations, together with [45, Th. 4.7], imply that
the alternating convex minimization adopted in Algorithm 1
(see [45, Algorithm 4.1]) must generate a sequence {(Ak, Sk)}
that converges to a partial optimum (see [45, Definition 4.1] for
the definition of partial optimum). On the other hand, because
the �1-norm regularizer can be simplified as a differentiable
function (i.e., φ2(S) � ‖S‖1 = 1T

N S1L) when S � 0N×L , the
objective function of (5) is hence differentiable on the problem
domain [38]. Finally, by [45, Corollary 4.3], a partial optimum
must also be a stationary point, if the objective function
of (5) is differentiable and biconvex. Therefore, the proof of
Proposition 1 has been completed. �

B. Proof of Lemma 1

By (18) and (19) and r2 = L/Lh , one can see that

Jn1 ∩ Jn2 = ∅ for any n1 �= n2. (32)

From (20) and (32), there exists a permutation matrix 	 ∈
R

L×L such that Z	 = [ZJ1, . . . , ZJLh
] and

Yh = (Z	)(ILh ⊗ g) + Eh . (33)

Comparing (2) and (33), we can take the spatial spread
transform matrix as

B = 	 (ILh ⊗ g) ∈ R
L×Lh . (34)

Moreover, to simplify the proof, we can assume without loss of
generality that the columns of Z have already been partitioned
(i.e., Z = [ZJ1, . . . , ZJLh

]), implying that the permutation
matrix 	 = IL , which, together with (34) and the fact of
L = r2 Lh , yields

BT ⊗ Ak = ILh ⊗ (gT ⊗ Ak) (35)

IL ⊗ (DAk) = ILh ⊗ (Ir2 ⊗ DAk). (36)

From (9), (35), and (36), we observe that

CT
1 C1 = ILh ⊗ (C̄T C̄) (37)

where C1 denotes C(Ak)
1 for notational simplicity [see (9)].

Then, by (17) and (37), the solution of (16a) is given by

s j+1 = (
CT

1 C1 + η IN L
)−1 v (38)

= [ILh ⊗ (C̄T C̄ + η Ir2 N )−1] v (39)

where the vector v � CT
1 y + η x j − ημ j . Note that the

inversion formula in (39) is much computationally economical
than (38), because we only need to compute the inverse of a
(Nr2) × (Nr2) matrix in (39) [instead of an (N L) × (N L)
matrix in (38)].

However, the computation of v = CT
1 y + η x j − ημ j is

still time-consuming, due to multiplications involved in CT
1 y.

Directly simplifying the expression of CT
1 y (so as to reduce the

complexity) does not seem feasible. To solve this bottleneck,
we come up with directly dealing with the multiplication
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chain, i.e., (CT
1 C1 + η IN L )−1CT

1 y (instead of solely dealing
with CT

1 y). Specifically, we have(
CT

1 C1 + η IN L
)−1CT

1 y

= (
CT

1 C1 + η IN L
)−1[ILh ⊗ (gT ⊗ Ak)T ]yh

+ (CT
1 C1 + η IN L

)−1[ILh ⊗ (Ir2 ⊗ DAk)T ]ym

= {ILh ⊗ [(C̄T C̄ + η Ir2 N )−1(gT ⊗ Ak)T ]}yh

+ {ILh ⊗ [(C̄T C̄ + η Ir2 N )−1(Ir2 ⊗ DAk)T ]}ym (40)

where the first equality is due to (35) and (36); the second
equality is due to (37) and some simple matrix manipulations.
Note that, in (40), we only need to compute [(C̄T C̄ +
η Ir2 N )−1(gT ⊗ Ak)T ] and [(C̄T C̄ + η Ir2 N )−1(Ir2 ⊗ DAk)T ]
once, and then blockwisely copy them Lh times, followed by
the matrix-vector multiplications. Combining (39) and (40)
yields (21).

The computational complexity of the first term in (21)
is dominated by the matrix–matrix multiplication for C̄T C̄
[requiring O((Nr2)2(M + r2 Mm))], the inverse of an
(Nr2)×(Nr2) matrix [requiring O((Nr2)3)], and Lh multipli-
cations of an (Nr2)×(Nr2) matrix and an (Nr2)-dimensional
vector [requiring O(Lh(Nr2)2)].

The computational complexity of the second term in (21)
is dominated by the matrix–matrix multiplication for C̄T C̄
[requiring O((Nr2)2(M + r2 Mm))], the inverse of an
(Nr2) × (Nr2) matrix [requiring O((Nr2)3)], the multipli-
cation of an (Nr2) × (Nr2) matrix and an (Nr2) × M
matrix [requiring O((Nr2)2 M)], and Lh multiplications of an
(Nr2) × M matrix and an M-dimensional vector [requiring
O(Lh Nr2 M)].

The computational complexity of the third term in (21)
is dominated by the matrix–matrix multiplication for C̄T C̄
[requiring O((Nr2)2(M + r2 Mm))], the inverse of an
(Nr2) × (Nr2) matrix [requiring O((Nr2)3)], the multiplica-
tion of an (Nr2) × (Nr2) matrix and an (Nr2) × (Mmr2)
matrix [requiring O((Nr2)2 Mmr2)], and Lh multiplications of
an (Nr2)×(Mmr2) matrix and an (Mmr2)-dimensional vector
[requiring O(Lh Nr2 Mmr2)].

All in all, the computational complexity of (21) is
O(Nr2(Nr2 + Lh)ξ) = O((N L + (Nr2)2)ξ), where ξ �
max{M, Mmr2, Nr2}. �

C. Derivation of (22)

KKT conditions are not directly applicable in solving (16b),
because the �1-norm term is not differentiable [38]. This
issue can be solved by simultaneously handling the �1-norm
term and the nonnegative constraint, using one single primal
variable x, in the ADMM formulation (14).

To be precise, by the fact of ‖x‖1 = 1T
N L x, ∀x ∈ R

N L+ ,
we reformulate (16b) into a differentiable form

x j+1 ∈ arg min
x∈R

N L+
λ21T

N L x + η

2
‖s j+1 − x + μ j‖2

2 (41)

whose closed-form solution can then be obtained by solving
the associated KKT conditions [38], that is

x
 � 0N L (42a)

λ̃
 � 0N L (42b)

λ̃

i x


i = 0 ∀i (42c)

λ21N L + η

2
(2x
 − 2(s j+1 + μ j )) − λ̃
 = 0N L (42d)

where λ̃ is the vector consisting of all the Lagrange multi-
pliers for the (componentwise) inequality constraints in (41);

xi and λ̃i , respectively, denote the i th entry of x and λ̃;
the superscript “
” denotes primal and dual optimal solutions
of (41). From (42b) and (42d), it can be seen that the primal
optimal solution must satisfy

x
 � s j+1 + μ j − (λ2/η)1N L

which, together with (42a) and the complementary slack-
ness (42c), yields the closed-form solution

x j+1 = x
 = [s j+1 + μ j − (λ2/η)1N L ]+
where the operator [·]+ is applied componentwisely. �

D. Proof of Lemma 2

We recall that C2 denotes C(Sk+1)
2 for notational simplicity

[see (10)]. The computational complexity of (26) mainly
comes from the computation of CT

2 C2; note that the com-
putation of PT P is very fast due to the high sparsity of P.
Hence, our primary objective is to reduce the complexity
in computing CT

2 C2. Note that CT
2 C2 does not have the

elegant diagonal structure as CT
1 C1 does [see (37)]. Therefore,

we need other strategies to reduce the complexity to be
presented next.

We begin by noticing from (10) that

CT
2 C2 = ((Sk+1B)T ⊗ IM )T ((Sk+1B)T ⊗ IM )

+ ((Sk+1)T ⊗ D)T ((Sk+1)T ⊗ D). (43)

We handle the first term and the second term in (43) by their
respective structures in the following. For ease of the ensuing
presentation, for a given matrix M = [m1, . . . , mc], we use
[M]a:b (1 ≤ a ≤ b ≤ c) to denote the matrix [ma, . . . , mb].

First, since Sk+1 ∈ R
N×L and B ∈ R

L×Lh , if we directly
compute (Sk+1B)T in the first term in (43), the complexity
is O(N Lh L). However, by (34), we actually only need to
compute

v′ = gT [[Sk+1]T
1:r2, [Sk+1]T

r2+1:2r2 , . . . , [Sk+1]T
(Lh−1)r2+1:L

]
∈ R

1×N Lh (44)

and then reshape this vector to obtain the matrix (Sk+1B)T ∈
R

Lh×N (whose first row is given by [v′]1:N , and the second
row is formed by [v′]N+1:2N , and so on), resulting in a total
complexity of O(N Lhr2) = O(N L) � O(N Lh L). Then,
the above strategy for obtaining (Sk+1B)T , together with the
observation that

((Sk+1B)T ⊗ IM )T ((Sk+1B)T ⊗ IM )

= ((Sk+1B)(Sk+1B)T ) ⊗ IM (45)
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makes the complexity of the first term in (43) only

O(N L + N2 Lh). (46)

To handle the second term in (43), we employ two properties
of Kronecker product, i.e., (M1 ⊗ M2)

T = MT
1 ⊗ MT

2 and
(M1 ⊗ M2)(M3 ⊗ M4) = M1M3 ⊗ M2M4 (for arbitrary
matrices Mi of proper dimension), which lead to

((Sk+1)T ⊗ D)T ((Sk+1)T ⊗ D) = [Sk+1(Sk+1)T ] ⊗ (DT D).

(47)

Note that the computation of the left-hand side of (47) costs
O(N2 M2 L Mm ), while the computation of the right-hand side
only costs

O(N2 L + M2 Mm + N2 M2). (48)

Combining (26), (43), (45), and (47) yields (27).
Besides (46) and (48), the remaining complexity for
computing (27) is dominated by the matrix–matrix mul-
tiplication for PT P [requiring O((M N)2 M N(N − 1))],
the inverse of an (M N) × (M N) matrix [requiring
O((M N)3)], the multiplication of an (M N)× (M Lh + Mm L)
matrix and an (M Lh + Mm L)-dimensional vector [requir-
ing O((M N)(M Lh + Mm L))], and the multiplication of an
(M N) × (M N) matrix and an (M N)-dimensional vector
[requiring O((M N)2)]. All in all, the complexity of (27) is
given by (see Mm < M)

O(N2 L + M3 N4 + M2 N Lh + M N Mm L)

which reduces to O(N4 M3 + (N M)ξ ′) under the premise of
N ≤ M Mm . Hence, the proof of Lemma 2 is completed. �
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